1 (i) Solve the equation $10^{x}=316$.
(ii) Simplify $\log _{a}\left(a^{2}\right)-4 \log _{a}\left(\frac{1}{a}\right)$.

2 Answer part (iii) of this question on the insert provided.
A hot drink is made and left to cool. The table shows its temperature at ten-minute intervals after it is made.

Time (minutes)	10	20	30	40	50
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	68	53	42	36	31

The room temperature is $22^{\circ} \mathrm{C}$. The difference between the temperature of the drink and room temperature at time t minutes is $z^{\circ} \mathrm{C}$. The relationship between z and t is modelled by

$$
z=z_{0} 10^{-k t}
$$

where z_{0} and k are positive constants.
(i) Give a physical interpretation for the constant z_{0}.
(ii) Show that $\log _{10} z=-k t+\log _{10} z_{0}$.
(iii) On the insert, complete the table and draw the graph of $\log _{10} z$ against t.

Use your graph to estimate the values of k and z_{0}.
Hence estimate the temperature of the drink 70 minutes after it is made.

3 (a) André is playing a game where he makes piles of counters. He puts 3 counters in the first pile. Each successive pile he makes has 2 more counters in it than the previous one.
(i) How many counters are there in his sixth pile?
(ii) André makes ten piles of counters. How many counters has he used altogether?
(b) In another game, played with an ordinary fair die and counters, Betty needs to throw a six to start.

The probability P_{n} of Betty starting on her nth throw is given by

$$
P_{n}=\frac{1}{6} \times\left(\frac{5}{6}\right)^{n-1} .
$$

(i) Calculate P_{4}. Give your answer as a fraction.
(ii) The values $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots$ form an infinite geometric progression. State the first term and the common ratio of this progression.

Hence show that $P_{1}+P_{2}+P_{3}+\ldots=1$.
(iii) Given that $\mathrm{P}_{n}<0.001$, show that n satisfies the inequality

$$
n>\frac{\log _{10} 0.006}{\log _{10}\left(\frac{5}{6}\right)}+1
$$

Hence find the least value of n for which $\mathrm{P}_{n}<0.001$.

